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Announcements

• No new problem set this week

• PS8 contains questions on this week’s lecture

• Try to solve all the exercises from polycopie (Chapter 6)
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First Order Systems
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• Systems with a transfer function that has a characteristic polynomial of 
degree one

The pole of the system is at  

Time constant

Steady State Gain

𝑝 = −
1
𝜏



First Order Systems: Step Response

4

Normalized response curve𝑐 𝑡 =
𝑦(𝑡)
𝐾𝐴

𝑐 𝑡 = 1 − 𝑒!(#/%)
𝑠𝑙𝑜𝑝𝑒 =

1
𝜏

𝜏 2𝜏 3𝜏 4𝜏 5𝜏



Second Order Systems
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• Transfer function without zeros

• For now, assume that

𝐺 𝑠 =
𝑌(𝑠)
𝑈(𝑠) = 𝐾

𝜔!"

𝑠" + 2ζ𝜔!𝑠 + 𝜔!"

ζ ≥ 0

K : Steady-state output (DC Gain)
ζ : Damping ratio
ω0 : Undamped natural frequency



Second Order Systems
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• Transfer function without zeros

• Poles of the System

• Poles are either 
• distinct real number, 
• repeated real numbers, or 
• complex conjugates

𝐺 𝑠 =
𝑌(𝑠)
𝑈(𝑠) = 𝐾

𝜔!"

𝑠" + 2ζ𝜔!𝑠 + 𝜔!"

𝑝#," = −𝜔! ζ ± ζ" − 1



Second Order Systems

• Overdamped response (real and distinct poles)

• Critically damped response (real and repeated poles)

• Underdamped response (complex conjugate poles)

• Undamped response (complex conjugate poles without real parts)
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Step Response of Second Order Systems
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Lecture Overview

• Underdamped Response

• Stability

• Higher order systems
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Second Order Systems

10

• Underdamped Case (Poles are complex conjugates) 0 ≤ ζ < 1

𝐺 𝑠 =
𝑌(𝑠)
𝑈(𝑠) = 𝐾

𝜔!"

𝑠" + 2ζ𝜔!𝑠 + 𝜔!"
= 𝐾

𝑎" + 5𝜔"

(𝑠 + 𝑎)"+5𝜔"

Damped natural frequency Attenuation

𝑎 = ζ𝜔!5𝜔 = 𝜔! 1 − ζ"



Second Order Systems
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• Underdamped Case (Poles are complex conjugates) 

• Step Response

𝑌 𝑠 =
1
𝑠 −

𝑠 + ζ𝜔,
𝑠 + ζ𝜔, - + (𝜔- −

ζ𝜔,
(𝑠 + ζ𝜔,)-+(𝜔-

0 ≤ ζ < 1

𝐺 𝑠 =
𝑌(𝑠)
𝑈(𝑠) = 𝐾

𝜔!"

𝑠" + 2ζ𝜔!𝑠 + 𝜔!"
= 𝐾

𝑎" + 5𝜔"

(𝑠 + 𝑎)"+5𝜔"

𝑦(𝑡) = 𝜀 𝑡 𝐾𝐴 1 − 𝑒./0 cos (𝜔𝑡 +
ζ

1 − ζ-
sin (𝜔𝑡



Transient Response (Underdamped System) 
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• Delay time, td: Time required for the response to reach half of the final 
value the very first time

• Rise time, tt: Time required for the response to rise from 0% to 100% 
(underdamped system) or from 10% to 90% (overdamped system)

• Peak time, tp: Time required for the response to reach the first peak of the 
overshoot.

• Maximum percent overshoot, Mp

• Settling time, ts: Time required for the response curve to reach and stay 
within a range about the final value of size specified by absolute percentage 
of the final value  (usually 2% or 5%)



Transient Response 
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Rise Time
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𝑝!,# = −𝜔$(ζ± 𝑗 1 − ζ#)

𝑗 (𝜔

−𝑎

4𝜔 = 𝜔$ 1 − ζ#

𝑡1 =
1
(𝜔
tan.2

(𝜔
−𝑎

=
𝜋 − 𝛽
(𝜔

𝑐 𝑡% = 1 − 𝑒&ζ''(( cos 5𝜔𝑡% +
ζ

1 − ζ"
sin 5𝜔𝑡% = 1

𝑒&ζ''(( ≠ 0 cos 5𝜔𝑡% +
ζ

1 − ζ"
sin 5𝜔𝑡% = 0

tan 5𝜔𝑡% = −
1 − ζ"

ζ
= −

5𝜔
𝑎

𝜔,



Peak Time
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𝑡3 =
𝜋
(𝜔

%&
%'
= ζ𝜔$𝑒(ζ)!'" cos 4𝜔𝑡* +

ζ
!(ζ#

sin 4𝜔𝑡* + 𝑒(ζ)!'" 4𝜔 sin 4𝜔𝑡* −
ζ+)
!(ζ#

cos 4𝜔𝑡*

A
𝑑𝑐
𝑑𝑡 ()()

= sin 5𝜔𝑡*
𝜔,
1 − ζ"

𝑒.ζ4!0" = 0

sin 5𝜔𝑡* = 0 5𝜔𝑡* = 0, π, 2π, 3π, ...

First peak overshoot: 5𝜔𝑡* =π



Maximum Overshoot
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𝑀* = 𝑐 𝑡* − 1 = −𝑒&ζ'' ⁄, -' cos 𝜋 +
ζ

1 − ζ"
sin 𝜋 = 𝑒&ζ,/ #&ζ*

• Maximum overshoot occurs at the peak time

• Maximum percent overshoot

OS% = 𝑒&ζ,/ #&ζ*×100%

= 𝑒&(𝑎 /-'),



Settling Time
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• Envelope Curves

1 ±
𝑒&ζ''(

1 − ζ"

𝑐 𝑡 = 1 −
𝑒&ζ''(

1 − ζ"
sin 5𝜔𝑡 + tan&#

1 − ζ"

ζ

• Time Constant

𝜏 =
1
ζ𝜔,

=
1
𝑎

𝑡5 = 4𝜏 =
4
𝑎
=

4
ζ𝜔,

𝑡5 = 3𝜏 =
3
𝑎
=

3
ζ𝜔,

• 5% Criterion• 2% Criterion



Settling Time
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𝜏 =
1
ζ𝜔,

1 −
𝑒&ζ''(

1 − ζ"

1 +
𝑒&ζ''(

1 − ζ"

1 +
1

1 − ζ"

1 −
1

1 − ζ"
𝜏 2𝜏 3𝜏 4𝜏



Comments on Transient-Response Specifications
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• Small values of damping coefficient (that is, ζ < 0.4 )
• Excessive overshoot in the transient response

• Large values of damping coefficient (that is, ζ > 0.8 )
• Sluggish response

• If we determine damping coefficient according to permissible maximum 
overshoot, settling time will be primarily determined by undamped 
natural frequency.

• Rapid response requires large natural frequency

• Overdamped systems have large settling time



Comparison of Different Second Order Systems
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• If the poles have the same real part
• Same time constant
• Same settling time

• If the poles have the same imaginary part
• Same period of oscillation
• Same peak time

• If the poles have the same damping coefficient
• Same overshoot

𝑝2,- = −𝜔, ζ ± 𝑗 1 − ζ- = −𝑎 ± 𝑗(𝜔



Graphical Representation
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𝑝!,# = −𝜔$(ζ± 𝑗 1 − ζ#) 𝑝! = −𝜔$ζ−𝑗𝜔$ 1 − ζ# = −𝑎 − 𝑗4𝜔

𝑝# = −𝜔$ζ+𝑗𝜔$ 1 − ζ# = −𝑎 + 𝑗4𝜔

𝑗 (𝜔

−𝑎

𝜔, 𝑡* =
𝜋 − 𝛽
4𝜔

𝑡, =
𝜋
4𝜔

𝑡- =
3
𝑎

5% criterion

𝑂𝑆% = 𝑒(ζ./ !(ζ#×100%



Example
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𝜔,𝜔7 is



Poles, Zeros and System Properties
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• The homogenous (free, natural) response can be written as 

𝑥̇ = A𝑥

𝑦8 𝑡 =E
9:2

7

𝐶9𝑒3#0

• The transfer function poles are the roots of the characteristic equation, 
and also the eigenvalues of the system A matrix. 



Poles, Zeros and System Properties
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• A real pole in the left-half of the s-plane defines an exponential decaying 
component in the homogenous response.

• The rate of decay is determined by the pole location 
• poles far away from the origin in the left-half plane correspond to 

components that decay rapidly.

• Dominant pole approximation
• If the system has a cluster of poles and zeros that are much closer 

(5 times or more) to the origin than the other poles and zeros, the 
system can be approximated by a lower order system with only 
those dominant poles and zeros.

𝑝9 = −𝑎 𝑦 𝑡 = 𝐶𝑒./0



Dominant Pole Approximation
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• One of the two decaying exponentials decreases much faster than the other

• Faster decaying exponential term may be neglected (smaller time constant)

• Once the faster decaying exponential term has disappeared, the response 
is similar to that of a first-order system.



Example
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Example
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Poles, Zeros and System Properties
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• A real pole in the right-half plane corresponds to an exponentially
increasing component in the homogenous response, thus defining the
system to be unstable.

𝑝9 = 𝑎 𝑦 𝑡 = 𝐶𝑒/0

• In a stable system all components of the homogenous response must 
decay to zero as time increases.

• If any pole has a positive real part there is a component in the output 
that increases without bound, causing the system to be unstable.

• For an LTI system to be stable, all of its poles must have negative real 
parts, that is they must all lie within the left-half of the s-plane.



Stability

29

• Stability of an LTI system does not depend on the input function

• The poles of the input contribute only to steady-state response



Poles, Zeros and System Properties
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• A complex conjugate pole pair in the left half of the s-plane combine to
generate a response component that is decaying sinusoid.

• The rate of decay is specified by the real component of the pole, the
frequency of oscillation is determined by the imaginary component of the
pole.

𝑝9 = 𝜎 ± 𝑗𝜔 = −𝑎 ± 𝑗𝜔 𝑦 𝑡 = 𝐴𝑒./0 sin(𝜔𝑡 + 𝜙)



Poles, Zeros and System Properties
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• An imaginary pole pair, that is a pole pair lying on the imaginary axis,
generates oscillatory component with a constant amplitude determined
by initial conditions.

• Mathematically, closed-loop poles on the jw axis will yield oscillations, the
amplitude of which is neither decaying nor growing with time. In practical
cases, where noise is present, however, the amplitude of oscillations may
increase at a rate determined by the noise power level. Therefore, a
control system should not have closed-loop poles on the jw axis.

• A complex pole pair in the right half plane generates an exponentially
increasing component (unstable system).

𝑝9 = 𝑗𝜔 𝑦 𝑡 = 𝐴 sin(𝜔𝑡 + 𝜙)



Poles and Stability
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𝑝#," = −𝜔! ζ ± ζ" − 1



Poles and Stability
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Effect of Zeros on Time Response
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• The magnitudes of the residues depend on both the poles and zeros

• Faster response

• Increased overshoot

𝐺 𝑠 =
𝑌(𝑠)
𝑈(𝑠)

= 𝐾
𝜔!"

𝑠" + 2ζ𝜔!𝑠 + 𝜔!"



Effect of Zeros on Time Response
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𝐺! 𝑠 =
𝜔$#

𝑠# + 2ζ𝜔$𝑠 + 𝜔$#
𝐺# 𝑠 =

1
𝑧 𝑠 + 1 𝜔$

#

𝑠# + 2ζ𝜔$𝑠 + 𝜔$#

𝐺# 𝑠 =
𝜔$#

𝑠# + 2ζ𝜔$𝑠 + 𝜔$#
+
1
𝑧 𝑠

𝜔$#

𝑠# + 2ζ𝜔$𝑠 + 𝜔$#
= 𝐺! 𝑠 +

1
𝑧 𝑠𝐺! 𝑠

𝑌# 𝑠 = 𝐺! 𝑠 +
1
𝑧
𝑠𝐺! 𝑠

1
𝑠
= 𝑌! 𝑠 +

1
𝑧
𝑠𝑌! 𝑠

𝑦# 𝑡 = 𝑦! 𝑡 +
1
𝑧
𝑦̇!(𝑡)

The step response of the second order system with a zero at s = -z is given by the 
step response of the original system plus a scaled version of the derivative of the 
step response of the original system. 



Effect of Zeros on Time Response
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zv=[0.5 1 2 10 inf];
t=[0:.1:5];
omega_n=1;
zeta=sqrt(2)/2;
yv=[];
for i=5:-1:1
z=zv(i);
G=tf([omega_nˆ2/z omega_nˆ2],[1 2*zeta*omega_n omega_nˆ2]);
[y,x]=step(G,t);
yv=[yv,y];

end
plot(t,yv(:,1),’-’,t,yv(:,2),’--’,t,yv(:,3),’-.’,t,yv(:,4),’-o’,t,yv(:,5),’-*’);
grid;
legend(’z=\infty’,’z=10’,’z=2’,’z=1’,’z=0.5’);

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5
Effect of an addtitional zero, ζ=0.707, ωn=1

z=∞
z=10    
z=2     
z=1     
z=0.5   

Figure 11: Effect of an additional left halfplane zero on a dominantly second-order system
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Effect of Zeros on Time Response
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• Note that as z increases (i.e., as the zero moves further into the left half 
plane), the term 1/z becomes smaller, and thus the contribution of the 
term dy1/dt decreases (i.e., the step response of this system starts to 
resemble the step response of the original system). 

• The effect of a left-half plane zero is to increase the overshoot, decrease 
the peak time, and decrease the rise time; the settling time is not 
affected too much. In other words, a left-half plane zero makes the step 
response faster.



Effect of Zeros on Time Response
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• If z is negative (which corresponds to the zero being in the right half 
plane), the derivative dy1/dt is subtracted from y1(t) to produce the 
output y2(t). 

• The response becomes slower

• No change in stability

• Note that the response can actually go in the opposite direction before 
rising to 1. This phenomenon is called undershoot.



Effect of Zeros on Time Response
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in the left half-plane makes the system faster and more oscillatory. This can be seen from the
simulations.

As the zero moves along the negative real axis toward the origin, the time to the first peak of
the step response decreases monotonically while the percent overshoot increases monotonically.
Also, it takes longer for the system to settle to the final value of the response.

The zero in the right half-plane retards the system and produces an undershoot. The persent
undershoot decreases as the zero moves along the positive real axis toward the infinity, see Fig-
ure 12. Again the system oscillates for a longer time.

zv=[-0.5 -1 -2 -10 -inf];
t=[0:.1:5];
omega_n=1;
zeta=sqrt(2)/2;
yv=[];
for i=5:-1:1

z=zv(i);
G=tf([omega_nˆ2/z omega_nˆ2],[1 2*zeta*omega_n omega_nˆ2]);
[y,x]=step(G,t);
yv=[yv,y];

end
plot(t,yv(:,1),’-’,t,yv(:,2),’--’,t,yv(:,3),’-.’,t,yv(:,4),’-o’,t,yv(:,5),’-*’);
grid;
legend(’z=-\infty’,’z=-10’,’z=-2’,’z=-1’,’z=-0.5’);

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Effect of an addtitional zero in the right half−plane, ζ=0.707, ωn=1

z=−∞
z=−10    
z=−2     
z=−1     
z=−0.5   

Figure 12: Effect of an additional zero in the right half-plane on a dominantly second-order
system
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Pole/zero cancellation
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• For any system in which one or more poles have been canceled by zeros 
in the transfer function, the modal components ept corresponding to the 
canceled poles will not appear in the output for any input u(t) 

• We say that the canceled modes are not excited by the input 

• As a zero approaches a pole, the amplitude of the modal component ept

corresponding to the pole decreases, for any input u(t). 

– Example

– Poles at p1,2 = -5 ± j5, p3 = -4 and zero at z1 = -4.05 



Example
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• Consider the following system



Example
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• Consider the following system

𝐺 𝑠 =
1
𝑧 𝑠 + 1

(𝑠 + 1)(0.1𝑠 + 1)

𝑌 𝑠 =
1
𝑠 −

10
9
𝑧 − 1
𝑧

𝑠 + 1 +
1
9
𝑧 − 10
𝑧

𝑠 + 10 𝑦 𝑡 = 1 −
10
9
𝑧 − 1
𝑧 𝑒!# +

1
9
𝑧 − 10
𝑧 𝑒!+,#



Example
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• Step response for different values of z

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

z=∞
z=10    
z=2.    
z=1.    
z=.5    
z=.2    

Figure 5: Step response of the dominantly first-order system with the additional zero at s = −z.

Effects of the additional zero:

z " 10. We can see that if z " 10, then 10
9

z−1
z ≈ 10/9, 1

9
z−10

z ≈ 1/9, and

y(t) ≈ yd(t) = 1 −
10

9
e−t for sufficiently large t.

Thus, the pole at s = −1 remains dominant.

z = 10. This zero cancels the pole at s = −10. The system becomes a first-order system.

1 < z < 10. In this case, the additional zero speeds up the system; see Figure 5.

z = 1. This cancels the pole at s = −1.

z < 1. The additional zero becomes dominant. It speeds up the system and at the same time
leads to occuring an overshoot; see Figure 5.

From this analysis, one can see the general effect that the speed of the response increases as zero
moves from +∞ to 0 along the negative real axis. When zero becomes dominant, an overshoot
occurs.

To obtain Figure 5, the following Matlab code was used:

zv=[.2 .5 1. 2. 10 inf];
t=[0:.1:5];
yv=[];
for i=6:-1:1
z=zv(i);
G=tf([1/z 1],conv([1 1],[1/10 1]));

5



Example
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• z >> 10 The pole at s = -1 remains dominant

10
9
𝑧 − 1
𝑧 ≈

10
9

1
9
𝑧 − 10
𝑧 ≈

1
9 𝑦 𝑡 = 1 −

10
9 𝑒!#

• z = 10 The zero cancels the pole at s = -10. The system becomes 1st order

• 1 < z < 10 The additional zero speeds up the system

• z = 1 The zero cancels the pole at s = -1.

• z < 1 The additional zero becomes dominant. It speeds up the system and 
creates an overshoot.

• The general effect of the zero in the left-half plane is to increase the speed 
of the response. When the zero becomes dominant, an overshoot occurs.



Higher order systems
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• For a stable system, the relative magnitudes of the residues determine 
the relative importance of the corresponding poles. 

• A pair of closely located poles and zeros will effectively cancel each other. 

• If a pole is located very far from origin, the residue of this pole may be 
small and its response will last for a short time. 

• Pole having very small residues contribute little to the transient response 
and correspondingly may be neglected 

• After neglecting, the higher order system may be approximated by a 
lower order one. 


