Dynamical Systems (ME221) E P :: L

Week 08: System Analysis in the Time Domain

Mahmut Selman Sakar

Institute of Mechanical Engineering, EPFL




Announcements

* No new problem set this week
* PS8 contains questions on this week’s lecture
* Tryto solve all the exercises from polycopie (Chapter 6]




First Order Systems

* Systems with a transfer function that has a characteristic polynomial of
degree one
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First Order Systems: Step Response

c(t) = % Normalized response curve
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Second Order Systems

e Transfer function without zeros

G(s) = Y(s) Wo*

=K
U(s) s? + 2Lwys + wy?
K : Steady-state output [DC GGain)

C : Damping ratio
w, : Undamped natural frequency

* For now, assume that { >0




Second Order Systems

e Transfer function without zeros

6(s) =2 _ Wo”

=K
U(s) S% + 20wys + wy?

* Poles of the System
P12 = —Wo (C nBVIERS 1)

* Poles are either
* distinct real number,
* repeated real numbers, or
e complex conjugates




Second Order Systems

* (Overdamped response (real and distinct poles]

* Critically damped response (real and repeated poles]

* Underdamped response [complex conjugate poles]

* Undamped response ([complex conjugate poles without real parts]




Step Response of Second Order Systems
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| ecture Overview

* Underdamped Response
» Stability
* Higher order systems




Second Order Systems

* Underdamped Case (Poles are complex conjugates}) 0<(<1

Y (s) wo* a’ + w?
G(s) = =K =K —
U(s) S%2 + 20wys + wy? (s + a)?+w?
Damped natural frequency Attenuation

W = woy1—C? a = Cw
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Second Order Systems

* Underdamped Case (Poles are complex conjugates}) 0<(<1

Y(s) wo* a’ + w*

G = =K K
(s) U(s) S%2 + 20wys + wy? (s + a)?+w?

* Step Response

u(t) = Aet)  Y(s) == S 1 ¢Wo <@o

s (s+lwg)?+ @2 (s+ (wy)’+m2

y(t) = e(t)KA {1 —e @t (cos wt +

Jlé__@sin at)}
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Transient Response (Underdamped System)

* Delay time, t;: Time required for the response to reach half of the final
value the very first time

* Rise time, t.: Time required for the response to rise from 0% to 100%
([underdamped system] or from 10% to 90% (overdamped system)

 Peak time, t_: Time required for the response to reach the first peak of the
overshoot.

* Maximum percent overshoot, M,
* Settling time, t_: Time required for the response curve to reach and stay

within a range about the final value of size specified by absolute percentage
of the final value (usually 2% or 3%]

12



Transient Response

Allowable tolerance
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Rise Time

P12 = —wo((£jy1—0%)
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Peak Time

dc

yri Ca)oe“;“’otr (COS wt, +

&

=(sin wt )
e=t, VT

dc
dt

e_cwotp =0

sin wt, = 0 j‘> wt, =0, m, 2w, 3, ...

A
First peak overshoot: Wty =T :> tp ==
w

sin a_)tr> + e“;“’otr (a_) sin wt, — —




Maximum Overshoot

* Maximum overshoot occurs at the peak time

p — —(2
My = C(tp) — 1 = —¢5wo(/@) (cosn + 1C 2 sinn) =e /176

* Maximum percent overshoot
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Settling Time

ct)=1-

* Envelope Curves

e—C(l)()t
1+

e 2% Criterion

sin (61: + tan~!

Ji-e
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Settling Time
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1 —
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Comments on Transient-Besponse Specifications

Small values of damping coefficient (that is, (< 0.4 ]
* Excessive overshoot in the transient response

* Large values of damping coefficient [that is, (> 0.8 )
* Sluggish response

* If we determine damping coefficient according to permissible maximum
overshoot, settling time will be primarily determined by undamped
natural frequency.

* Rapid response requires large natural frequency

* Overdamped systems have large settling time
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Comparison of Different Second Order Systems

* If the poles have the same real part
e Same time constant
* Same settling time

* If the poles have the same imaginary part
* Same period of oscillation

 Same peak time

* If the poles have the same damping coefficient
* Same overshoot

P12=—w0(§+]\/1—C2) aztj

SI

20



Graphical Representation

P12 = —wo({xjy1—1C%)

P1

—wol —jwoy1 - =—-a—jw

Py = —wolHwo1 -0 =—-a+jw
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Example

Wiy

s2+4s+K 524 2{w,s + w?
« For any gain K:

G(s) =

- (w, = 2 rad/s for any choice of gain K

L 4
— Settling time: Tg = Ton = 2s
+ ForK = 16,0, =V16 =47, { =—=0.5

Wn

* Increasing K
(1) decreases ¢ (increases OS%)
(11) increases w, and wy (decreases Tp,) :
faster response
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Poles, Zeros and System Properties

The homogenous (free, natural) response can be written as

n
yu(t) = 2 CiePit
i=1

The transfer function poles are the roots of the characteristic equation,
and also the eigenvalues of the system A matrix.

x = Ax
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Poles, Zeros and System Properties

* A real pole in the left-half of the s-plane defines an exponential decaying
component in the homogenous response.

pi=—a y(t)=Ce ™

* The rate of decay is determined by the pole location

poles far away from the origin in the left-half plane correspond to
components that decay rapidly.

* Dominant pole approximation

If the system has a cluster of poles and zeros that are much closer
(S times or more) to the origin than the other poles and zeros, the
system can be approximated by a lower order system with only
those dominant poles and zeros.
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Dominant Pole Approximation

* One of the two decaying exponentials decreases much faster than the other
* Faster decaying exponential term may be neglected (smaller time constant)

* Once the faster decaying exponential term has disappeared, the response
Is similar to that of a first-order system.

INZ
Im A
The duration of "slow" decay
each component
depends on its
real part
>t
O2 G,
Re \
E ; X AV Ny
A X >
A N
at least o
56 to 106 rapid" decay
Dominant
far pole region
insignificant > t
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Example

A
Jj2 "
-350 -1.0 —0%0 s
yn(t) = Cie " + Coe O + Ae~tsin (2t + ¢)
X 42

The term e 3!, with a time-constant 7 of 0.33 seconds, decays rapidly and is

significant only for approximately 47 or 1.33seconds.

The response has an oscillatory component Ae~!sin(2t + ¢) defined by the com-
plex conjugate pair, and exhibits some overshoot. The oscillation will decay in
approximately four seconds because of the e™! damping term.

The term e %1% with a time-constant 7 = 10 seconds, persists for approximately

40 seconds. It is therefore the dominant long term response component in the
overall homogeneous response.
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Example

O(s) = 50 B 50
8341252+ 2555+ 50 (s +10)(s2 + 2s + 5)

Ao
Step Response
X—1| j2 14
2nd-order approximation
1oL \/
X 1 )jw 1"""""";/ """""""""" ; """"""""""""
-5 \
g o8| / 3rd-order system
£ /
g_ "’v
— B
X 2 il /
1‘/
5 04} ://
82 -+ 28 -+ 5 02t /
0 1 1 1 1 1
0 1 2 3 4 5

Time (sec)




Poles, Zeros and System Properties

A real pole in the right-half plane corresponds to an exponentially
increasing component in the homogenous response, thus defining the
system to be unstable.

pi=a y()=Ce*

* In a stable system all components of the homogenous response must
decay to zero as time increases.

* If any pole has a positive real part there is a component in the output
that increases without bound, causing the system to be unstabile.

* For an LTI system to be stable, all of its poles must have negative real
parts, that is they must all lie within the left-half of the s-plane.
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Stability

Stability of an LTI system does not depend on the input function
The poles of the input contribute only to steady-state response
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Poles, Zeros and System Properties

* A complex conjugate pole pair in the left half of the s-plane combine to
generate a response component that is decaying sinusoid.

pi=0tjw=—atjw y(t) = Ae % sin(wt + ¢)

 The rate of decay is specified by the real component of the pole, the
frequency of oscillation is determined by the imaginary component of the
pole.
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Poles, Zeros and System Properties

* An imaginary pole pair, that is a pole pair lying on the imaginary axis,
generates oscillatory component with a constant amplitude determined
by initial conditions.

pi = Jjw y(t) = Asin(wt + ¢)

* Mathematically, closed-loop poles on the jw axis will yield oscillations, the
amplitude of which is neither decaying nor growing with time. In practical
cases, where noise is present, however, the amplitude of oscillations may
increase at a rate determined by the noise power level. Therefore, a
control system should not have closed-loop poles on the jw axis.

* A complex pole pair in the right half plane generates an exponentially
Increasing component (unstable system).
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Poles and Stabllity

P1,2 = —Wo (C /G — 1)

-
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Poles and Stabllity
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Effect of Zeros on Time Response

* The magnitudes of the residues depend on both the poles and zeros
* Faster response
* Increased overshoot

Y(s) _ K Wo°
U(S) B SZ + ZC(,()()S + (1)02

G(s) =
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Effect of Zeros on Time Response

1 2
6. (s) = Wo> 6. (s) = (ES + 1) Wy
1 S% + 2Lwgys + wy? 2 S% + 2Lwgys + wy?
2 2
Wy 1 Wy 1
G = + — =G + —sG
Z(S) S2 + 2(:(1)05 + (1)02 ZSS2 + 2(;(1)05 + (1)02 1(5) ZS 1(5)

1 1 1
Y2(s) = (01(5) + 2561(5))5 =Y(s) + ESY1(S)

1
y2(t) = y1 (1) + E)H(Q

The step response of the second order system with a zero at s = -z is given by the
step response of the original system plus a scaled version of the derivative of the
step response of the original system.
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Effect of Zeros on Time Response

Effect of an addtitional zero, {=0.707, ® =1

1.5 T T T T T T T
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Effect of Zeros on Time Response

Note that as z increases (i.e., as the zero moves further into the left half
plane), the term 1 /z becomes smaller, and thus the contribution of the
term dy,/dt decreases (i.e., the step response of this system starts to
resemble the step response of the original system).

The effect of a left-half plane zero is to increase the overshoot, decrease
the peak time, and decrease the rise time; the settling time is not
affected too much. In other words, a left-half plane zero makes the step
response faster.
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Effect of Zeros on Time Response

* If zis negative (which corresponds to the zero being in the right half
plane), the derivative dy,/dt is subtracted from y,(t) to produce the
output ys(t).

* The response becomes slower

* No change in stability

* Note that the response can actually go in the opposite direction before
rising to 1. This phenomenon is called undershoot.
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Effect of Zeros on Time Response

Effect of an addtitional zero in the right half-plane, {=0.707, o =T
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Pole/zero cancellation

* For any system in which one or more poles have been canceled by zeros
in the transfer function, the modal components eP* corresponding to the
canceled poles will not appear in the output for any input u(t)

* We say that the canceled modes are not excited by the input

* As a zero approaches a pole, the amplitude of the modal component ef*
corresponding to the pole decreases, for any input u(t).

— Example
— Poles at p;, =-5+j5, p; =-4 and zero at z;, = -4.05
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Example

* Consider the following system

vm(S) BlS + K
Vi(s) ~ ms2+ (B + By)s + K

my = 1/3 kg, K = 2N/m, B; =1 N-s/m, B, =2/3 N-s/m Ajo
G(s) = s+ 2 o 3(s+2)
7 (1/3)s2+(5/3)s+2  (s+2)(s+3)
X & > o
3 -3 -2
Gls) = —
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Example

* Consider the following system

B %S+ 1
G = GE D0+ 1)

10z—1 1z-10

1 973 9 =z
Y = — — :1——
() S s+1 +S+10 y(£)
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Example

» Step response for different values of z
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Example

z>>10 The pole at s = -1 remains dominant

1 10
~ — = - pt

10z—1 10 12—10
9 z 9 9 z

z = 10 The zero cancels the pole at s =-10. The system becomes 1 order

1 <z< 10 The additional zero speeds up the system

z = 1 The zero cancels the pole at s = -1.

z <1 The additional zero becomes dominant. It speeds up the system and
creates an overshoot.

The general effect of the zero in the left-half plane is to increase the speed
of the response. \When the zero becomes dominant, an overshoot occurs.
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Higher order systems

* For a stable system, the relative magnitudes of the residues determine
the relative importance of the corresponding poles.

* A pair of closely located poles and zeros will effectively cancel each other.

* If a pole is located very far from origin, the residue of this pole may be
small and its response will last for a short time.

* Pole having very small residues contribute little to the transient response
and correspondingly may be neglected

* After neglecting, the higher order system may be approximated by a
lower order one.
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